Logo Logo
Hilfe
Hilfe
Switch Language to English

Yao, Yinan; Kang, Seong Su; Xia, Yiyuan; Wang, Zhi-Hao; Liu, Xia; Muller, Thorsten; Sun, Yi E. und Ye, Keqiang (2021): A delta-secretase-truncated APP fragment activates CEBPB, mediating Alzheimer's disease pathologies. In: Brain, Bd. 144: S. 1833-1852

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Amyloid-beta precursor protein (APP) is sequentially cleaved by secretases and generates amyloid-beta, the major components in senile plaques in Alzheimer's disease. APP is upregulated in human Alzheimer's disease brains. However, the molecular mechanism of how APP contributes to Alzheimer's disease pathogenesis remains incompletely understood. Here we show that truncated APP C586-695 fragment generated by 6-secretase directly binds to CCAAT/enhancer-binding protein beta (CEBPB), an inflammatory transcription factor, and enhances its transcriptional activity, escalating Alzheimer's disease-related gene expression and pathogenesis. The APP C586-695 fragment, but not full-length APP, strongly associates with CEBPB and elicits its nuclear translocation and augments the transcriptional activities on APP itself, MAPT (microtubule-associated protein tau), delta-secretase and inflammatory cytokine mRNA expression, finally triggering Alzheimer's disease pathology and cognitive disorder in a viral overexpression mouse model. Blockade of delta-secretase cleavage of APP by mutating the cleavage sites reduces its stimulatory effect on CEBPB, alleviating amyloid pathology and cognitive dysfunctions. Clearance of APP C586-695 from 5xFAD mice by antibody administration mitigates Alzheimer's disease pathologies and restores cognitive functions. Thus, in addition to the sequestration of amyloid-beta, APP implicates in Alzheimer's disease pathology by activating CEBPB upon delta-secretase cleavage.

Dokument bearbeiten Dokument bearbeiten