Abstract
Latent Gaussian copula models provide a powerful means to perform multi-view data integration since these models can seamlessly express dependencies between mixed variable types (binary, continuous, zero-inflated) via latent Gaussian correlations. The estimation of these latent correlations, however, comes at considerable computational cost, having prevented the routine use of these models on high-dimensional data. Here, we propose a new computational approach for estimating latent correlations via a hybrid multilinear interpolation and optimization scheme. Our approach speeds up the current state of the art computation by several orders of magnitude, thus allowing fast computation of latent Gaussian copula models even when the number of variables p is large. We provide theoretical guarantees for the approximation error of our numerical scheme and support its excellent performance on simulated and real-world data. We illustrate the practical advantages of our method on high-dimensional sparse quantitative and relative abundance microbiome data as well as multi-view data from The Cancer Genome Atlas Project. Our method is implemented in the R package mixedCCA, available at https://github.com/irinagain/mixedCCA.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1061-8600 |
Sprache: | Englisch |
Dokumenten ID: | 103240 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:42 |
Letzte Änderungen: | 05. Jun. 2023, 15:42 |