Abstract
This study investigates the use of PVDF sensors for the detection of low pressure kHz thermoacoustic signals, emanating from pulsed proton beams during small animal irradiation. In particular, the impact of the backing material and detector geometry on the measured signal amplitude and accuracy of time-of-flight estimations is assessed. A simulation model, including FLUKA Monte Carlo simulations of the proton dose, pressure propagation using k-Wave, modeling the backing geometry and a Mason model of the PVDF electroacoustic response is proposed. Thereafter, suitable backing materials are investigated by varying the backing density, the speed of sound and the detector geometry. Tungsten is found to be a good candidate to improve the sensor sensitivity, while maintaining accurate localization of the maximum of the proton dose, i.e., Bragg peak localized with an error lower than 5 % for the considered scenarios. Tungsten backing as thin as 2.5 mm allows to improve the sensitivity of the detector by a factor 4 compared to 10 mm epoxy backing.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
EU Funded Grant Agreement Number: | 725539 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Consolidator Grant > ERC Grant 725539: SIRMIO - Small Animal Ion Irradiator for Research in Molecular Image-Guided Radio-Oncology |
Publikationsform: | Submitted Version |
Keywords: | PVDF, ionoacoustics, thermoacoustics, proton range verification |
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-103645-0 |
Sprache: | Englisch |
Dokumenten ID: | 103645 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Jun. 2023, 13:25 |
Letzte Änderungen: | 04. Jan. 2024, 11:53 |
Literaturliste: | [1] D. R. Olsen, Ø. S. Bruland, G. Frykholm, and I. N. Norderhaug, “Proton therapy–a systematic review of clinical effectiveness,” Radiotherapy and oncology, vol. 83, no. 2, pp. 123–132, 2007. [2] B. Schaffner and E. Pedroni, “The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between ct-hu and proton stopping power,” Physics in Medicine & Biology, vol. 43, no. 6, p. 1579, 1998. [3] H. Paganetti, “Range uncertainties in proton therapy and the role of monte carlo simulations,” Physics in Medicine & Biology, vol. 57, no. 11, p. R99, 2012. [4] S. Kellnberger, W. Assmann, S. Lehrack, S. Reinhardt, P. Thirolf, D. Queirós, G. Sergiadis, G. Dollinger, K. Parodi, and V. Ntziachristos, “Ionoacoustic tomography of the proton bragg peak in combination with ultrasound and optoacoustic imaging,” Scientific reports, vol. 6, p. 29305, 2016. [5] S. Patch, M. K. Covo, A. Jackson, Y. Qadadha, K. Campbell, R. Albright, P. Bloemhard, A. Donoghue, C. Siero, T. Gimpel et al., “Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the bragg peak onto an ultrasound image,” Physics in Medicine & Biology, vol. 61, no. 15, p. 5621, 2016. [6] K. Parodi and W. Assmann, “Ionoacoustics: A new direct method for range verification,” Modern Physics Letters A, vol. 30, no. 17, p. 1540025, 2015. [7] J. Lascaud, P. Dash, H.-P. Wieser, R. Kalunga, M. Wuerl, W. Assmann, and K. Parodi, “Investigating the accuracy of co-registered ionoacoustic and ultrasound images in pulsed proton beams,” Physics in Medicine & Biology, vol. 66, no. 18, p. 185007, 2021. [8] J. Lascaud, R. Kalunga, S. Lehrack, H.-P. Wieser, F. S. Englbrecht, M. Würl, W. Assmann, A. S. Savoia, and K. Parodi, “Applicability of capacitive micromachined ultrasonic transducers for the detection of proton-induced thermoacoustic waves,” in 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019, pp. 143–146. [9] K. C. Jones, C. M. Seghal, and S. Avery, “How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies,” Physics in Medicine & Biology, vol. 61, no. 6, p. 2213, 2016. [10] K. Parodi, W. Assmann, C. Belka, J. Bortfeldt, D.-A. Clevert, G. Dedes, R. Kalunga, S. Kundel, N. Kurichiyanil, P. Lämmer et al., “Towards a novel small animal proton irradiation platform: the sirmio project,” Acta Oncologica, vol. 58, no. 10, pp. 1470–1475, 2019. [11] T. Böhlen, F. Cerutti, M. Chin, A. Fassó, A. Ferrari, P. Ortega, A. Mairani, P. Sala, G. Smirnov, and V. Vlachoudis, “The FLUKA Code: Developments and Challenges for High Energy and Medical Applications,” Nuclear Data Sheets, vol. 120, no. 0, pp. 211 – 214, 2014. [12] A. Ferrari, P. R. Sala, A. Fassó, and J. Ranft, “FLUKA: a multi-particle transport code,” CERN-2005-10, vol. INFN/TC 05/11, SLAC-R-773, 2005. [13] B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” Journal of biomedical optics, vol. 15, no. 2, p. 021314, 2010. |