Abstract
Many behaviours that are critical for animals to survive and thrive rely on spatial navigation. Spatial navigation, in turn, relies on internal representations about one’s spatial location, one’s orientation or heading direction and the distance to objects in the environment. Although the importance of vision in guiding such internal representations has long been recognized, emerging evidence suggests that spatial signals can also modulate neural responses in the central visual pathway. Here, we review the bidirectional influences between visual and navigational signals in the rodent brain. Specifically, we discuss reciprocal interactions between vision and the internal representations of spatial position, explore the effects of vision on representations of an animal’s heading direction and vice versa, and examine how the visual and navigational systems work together to assess the relative distances of objects and other features. Throughout, we consider how technological advances and novel ethological paradigms that probe rodent visuo-spatial behaviours allow us to advance our understanding of how brain areas of the central visual pathway and the spatial systems interact and enable complex behaviours.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Biologie > Department Biologie II > Neurobiologie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
ISSN: | 1471-003X |
Bemerkung: | First published online 28 June 2023 |
Sprache: | Englisch |
Dokumenten ID: | 104415 |
Datum der Veröffentlichung auf Open Access LMU: | 13. Jul. 2023, 05:10 |
Letzte Änderungen: | 29. Aug. 2023, 12:06 |