Abstract
Monitoring the implementation of emission commitments under the Paris agreement relies on accurate estimates of terrestrial carbon fluxes. Here, we assimilate a 21st century observation-based time series of woody vegetation carbon densities into a bookkeeping model (BKM). This approach allows us to disentangle the observation-based carbon fluxes by terrestrial woody vegetation into anthropogenic and environmental contributions. Estimated emissions (from land-use and land cover changes) between 2000 and 2019 amount to 1.4 PgC yr −1 , reducing the difference to other carbon cycle model estimates by up to 88% compared to previous estimates with the BKM (without the data assimilation). Our estimates suggest that the global woody vegetation carbon sink due to environmental processes (1.5 PgC yr −1 ) is weaker and more susceptible to interannual variations and extreme events than estimated by state-of-the-art process-based carbon cycle models. These findings highlight the need to advance model-data integration to improve estimates of the terrestrial carbon cycle under the Global Stocktake.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Geowissenschaften > Department für Geographie > Physische Geographie und Landnutzungssysteme |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie |
URN: | urn:nbn:de:bvb:19-epub-104518-1 |
ISSN: | 2041-1723 |
Sprache: | Englisch |
Dokumenten ID: | 104518 |
Datum der Veröffentlichung auf Open Access LMU: | 13. Jul. 2023, 13:41 |
Letzte Änderungen: | 03. Apr. 2024, 13:38 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |