Abstract
Identification of fusion genes in clinical routine is mostly based on cytogenetics and targeted molecular genetics, such as metaphase karyotyping, fluorescence in situ hybridization and reverse-transcriptase polymerase chain reaction. However, sequencing technologies are becoming more important in clinical routine as processing time and costs per sample decrease. To evaluate the performance of fusion gene detection by RNA-sequencing compared to standard diagnostic techniques, we analyzed 806 RNA-sequencing samples from patients with acute myeloid leukemia using two state-of-the-art software tools, namely Arriba and FusionCatcher. RNA-sequencing detected 90% of fusion events that were reported by routine with high evidence, while samples in which RNA-sequencing failed to detect fusion genes had overall lower and inhomogeneous sequence coverage. Based on properties of known and unknown fusion events, we developed a workflow with integrated filtering strategies for the identification of robust fusion gene candidates by RNA-sequencing. Thereby, we detected known recurrent fusion events in 26 cases that were not reported by routine and found discrepancies in evidence for known fusion events between routine and RNA-sequencing in three cases. Moreover, we identified 157 fusion genes as novel robust candidates and comparison to entries from ChimerDB or Mitelman Database showed novel recurrence of fusion genes in 14 cases. Finally, we detected the novel recurrent fusion gene NRIP1-MIR99AHG resulting from inv(21)(q11.2;q21.1) in nine patients (1.1%) and LTN1-MX1 resulting from inv(21)(q21.3;q22.3) in two patients (0.25%). We demonstrated that NRIP1-MIR99AHG results in overexpression of the 3' region of MIR99AHG and the disruption of the tricistronic miRNA cluster miR-99a/let-7c/miR-125b-2. Interestingly, upregulation of MIR99AHG and deregulation of the miRNA cluster, residing in the MIR99AHG locus, are known mechanisms of leukemogenesis in acute megakaryoblastic leukemia. Our findings demonstrate that RNA-sequencing has a strong potential to improve the systematic detection of fusion genes in clinical applications and provides a valuable tool for fusion discovery.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-106591-0 |
ISSN: | 0390-6078 |
Sprache: | Englisch |
Dokumenten ID: | 106591 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Sep. 2023, 13:41 |
Letzte Änderungen: | 25. Sep. 2023, 15:13 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 278529602 |