Abstract
We argue that black holes admit vortex structure. This is based both on a graviton-condensate description of a black hole as well as on a correspondence between black holes and generic objects with maximal entropy compatible with unitarity, so-called saturons. We show that due to vorticity, a Q-ball-type saturon of a calculable renormalizable theory obeys the same extremality bound on the spin as the black hole. Correspondingly, a black hole with extremal spin emerges as a graviton condensate with vorticity. This offers a topological explanation for the stability of extremal black holes against Hawking evaporation. Next, we show that in the presence of mobile charges, the global vortex traps a magnetic flux of the gauge field. This can have macroscopically observable consequences. For instance, the most powerful jets observed in active galactic nuclei can potentially be accounted for. As a signature, such emissions can occur even without a magnetized accretion disk surrounding the black hole. The flux entrapment can provide an observational window to various hidden sectors, such as millicharged dark matter.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-106904-0 |
ISSN: | 0031-9007 |
Sprache: | Englisch |
Dokumenten ID: | 106904 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Sep. 2023, 13:45 |
Letzte Änderungen: | 29. Sep. 2023, 21:07 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |