Abstract
Two-dimensional (2D) hybrid double perovskites are a promising emerging class of materials featuring superior intrinsic and extrinsic stability over their 3D parent structures, while enabling additional structural diversity and tunability. Here, we expand the Ag-Bi-based double perovskite system, comparing structures obtained with the halides chloride, bromide, and iodide and the organic spacer cation 4-fluorophenethylammonium (4FPEA) to form the n = 1 Ruddlesden-Popper (RP) phases (4FPEA)(4)AgBiX8 (X = Cl, Br, I). We demonstrate access to the iodide RP-phase through a simple organic spacer, analyze the different properties as a result of halide substitution and incorporate the materials into photodetectors. Highly oriented thin films with very large domain sizes are fabricated and investigated with grazing incidence wide angle X-ray scattering, revealing a strong dependence of morphology on substrate choice and synthesis parameters. First-principles calculations confirm a direct band gap and show type Ib and IIb band alignment between organic and inorganic quantum wells. Optical characterization, temperature-dependent photoluminescence, and optical-pump terahertz-probe spectroscopy give insights into the absorption and emissive behavior of the materials as well as their charge-carrier dynamics. Overall, we further elucidate the possible reasons for the electronic and emissive properties of these intriguing materials, dominated by phonon-coupled and defect-mediated polaronic states.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Chemistry |
Subjects: | 500 Science > 540 Chemistry |
URN: | urn:nbn:de:bvb:19-epub-106945-8 |
ISSN: | 2195-1071 |
Language: | English |
Item ID: | 106945 |
Date Deposited: | 11. Sep 2023, 13:45 |
Last Modified: | 04. Oct 2023, 16:19 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390776260 |