Abstract
In multi-class classification, it can be beneficial to decompose a learning problem into several simpler problems. One such reduction technique is the use of so-called nested dichotomies, which recursively bisect the set of possible classes such that the resulting subsets can be arranged in the form of a binary tree, where each split defines a binary classification problem. Recently, a genetic algorithm for optimizing the structure of such nested dichotomies has achieved state-of-the-art results. Motivated by its success, we propose to extend this approach using a co-evolutionary scheme to optimize both the structure of nested dichotomies and their composition into ensembles through which they are evaluated. Furthermore, we present an experimental study showing this approach to yield ensembles of nested dichotomies at substantially lower cost and, in some cases, even with an improved generalization performance.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Keywords: | coevolution, nested dichotomy, supervised learning |
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
Ort: | New York, NY, USA |
Sprache: | Englisch |
Dokumenten ID: | 107488 |
Datum der Veröffentlichung auf Open Access LMU: | 23. Okt. 2023, 10:26 |
Letzte Änderungen: | 23. Okt. 2023, 10:59 |