Abstract
Queuosine is one of the most complex hypermodified RNA nucleosides found in the Wobble position of tRNAs. In addition to Queuosine itself, several further modified derivatives are known, where the cyclopentene ring structure is additionally modified by a galactosyl-, a mannosyl-, or a glutamyl-residue. While sugar-modified Queuosine derivatives are found in the tRNAs of vertebrates, glutamylated Queuosine (gluQ) is only known in bacteria. The exact structure of gluQ, particularly with respect to how and where the glutamyl side chain is connected to the Queuosine cyclopentene side chain, is unknown. Here we report the first synthesis of gluQ and, using UHPLC-MS-coinjection and NMR studies, we show that the isolated natural gluQ is the α-allyl-connected gluQ compound.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 861381 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Publikationsform: | Publisher's Version |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-108278-9 |
ISSN: | 0002-7863 |
Sprache: | Englisch |
Dokumenten ID: | 108278 |
Datum der Veröffentlichung auf Open Access LMU: | 07. Dez. 2023, 06:29 |
Letzte Änderungen: | 08. Dez. 2023, 10:03 |
Literaturliste: | (1) Boccaletto, P.; Stefaniak, F.; Ray, A.; Cappannini, A.; Mukherjee, S.; Purta, E.; Kurkowska, M.; Shirvanizadeh, N.; Destefanis, E.; Groza, P.; et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022, 50 (D1), D231-D235. (2) Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 2021, 22 (6), 375-392. (3) Helm, M.; Alfonzo, J. D. Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland. Chem. Biol. 2014, 21 (2), 174-185. (4) Helm, M.; Brule, H.; Degoul, F.; Cepanec, C.; Leroux, J.; Giege, R.; Florentz, C. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 1998, 26 (7), 1636-1643. (5) Thumbs, P.; Ensfelder, T. T.; Hillmeier, M.; Wagner, M.; Heiss, M.; Scheel, C.; Schön, A.; Müller, M.; Michalakis, S.; Kellner, S.; Carell, T. Synthesis of galactosyl-queuosine and distribution of hypermodified Q-nucleosides in mouse tissues. Angew. Chem. Int. Ed. 2020, 59 (30), 12352-12356. (6) Klepper, F.; Jahn, E. M.; Hickmann, V.; Carell, T. Synthesis of the transfer-RNA nucleoside queuosine by using a chiral allyl azide intermediate. Angew. Chem. Int. Ed. 2007, 46 (13), 2325-2327. (7) Nishimura, S. Structure, Biosynthesis, and Function of Queuosine in Transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 1983, 28, 49-73. (8) Salinas-Giegé, T.; Giegé, R.; Giegé, P. tRNA biology in mitochondria. Int. J. Mol. Sci. 2015, 16 (3), 4518-4559, PubMed. (9) Harada, F.; Nishimura, S. Possible anticodon sequences of tRNAHis, tRNAAsn, and tRNAAsp from Escherichia coli. Universal presence of nucleoside O in the first position of the anticodons of these transfer ribonucleic acid. Biochemistry 1972, 11 (2), 301-308. (10) Katze, J. R.; Basile, B.; McCloskey, J. A. Queuine, a modified base incorporated posttranscriptionally into eukaryotic transfer RNA: wide distribution in nature. Science 1982, 216 (4541), 55-56. From NLM. (11) Kasai, H.; Oashi, Z.; Harada, F.; Nishimura, S.; Oppenheimer, N. J.; Crain, P. F.; Liehr, J. G.; von Minden, D. L.; McCloskey, J. A. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Biochemistry 1975, 14 (19), 4198-4208. (12) Meier, F.; Suter, B.; Grosjean, H.; Keith, G.; Kubli, E. Queuosine modification of the wobble base in tRNAHis influences ‘in vivo’ decoding properties. EMBO J. 1985, 4 (3), 823-827. (13) Morris, R. C.; Brown, K. G.; Elliott, M. S. The effect of queuosine on tRNA structure and function. J. Biomol. Struct. Dyn. 1999, 16 (4), 757-774. (14) Tuorto, F.; Legrand, C.; Cirzi, C.; Federico, G.; Liebers, R.; Müller, M.; Ehrenhofer‐Murray, A. E.; Dittmar, G.; Gröne, H. J.; Lyko, F. Queuosine‐modified tRNAs confer nutritional control of protein translation. EMBO J. 2018, 37 (18), e99777. (15) Zaborske, J. M.; Bauer DuMont, V. L.; Wallace, E. W. J.; Pan, T.; Aquadro, C. F.; Drummond, D. A. A Nutrient-Driven tRNA Modification Alters Translational Fidelity and Genome-wide Protein Coding across an Animal Genus. PLoS Biol. 2014, 12 (12), e1002015. (16) Marks, T.; Farkas, W. R. Effects of a diet deficient in tyrosine and queuine on germfree mice. Biochem. Biophys. Res. Commun. 1997, 230 (2), 233-237. From NLM. (17) Rakovich, T.; Boland, C.; Bernstein, I.; Chikwana, V. M.; Iwata-Reuyl, D.; Kelly, V. P. Queuosine deficiency in eukaryotes compromises tyrosine production through increased tetrahydrobiopterin oxidation. J. Biol. Chem. 2011, 286 (22), 19354-19363. From NLM. (18) Hillmeier, M.; Wagner, M.; Ensfelder, T. T.; Korytiakova, E.; Thumbs, P.; Müller, M.; Carell, T. Synthesis and structure elucidation of the human tRNA nucleoside mannosyl-queuosine. Nat. Commun. 2021, 12 (1). (19) Kasai, H.; Nakanishi, K.; Macfarlane, R. D.; Torgerson, D. F.; Ohashi, Z.; McCloskey, J. A.; Gross, H. J.; Nishimura, S. The structure of Q* nucleoside isolated from rabbit liver transfer ribonucleic acid. J. Am. Chem. Soc. 1976, 98 (16), 5044-5046. (20) Blaise, M.; Becker, H. D.; Keith, G.; Cambillau, C.; Lapointe, J.; Giege, R.; Kern, D. A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. Nucleic Acids Res. 2004, 32 (9), 2768-2775. (21) Salazar, J.; Ambrogelly, A.; Crain, P.; McCloskey, J.; Söll, D. A truncated aminoacyl–tRNA synthetase modifies RNA. Nucleic Acids Res. 2004, 101 (20), 7536-7541. (22) Anthony, N. G.; Baiget, J.; Berretta, G.; Boyd, M.; Breen, D.; Edwards, J.; Gamble, C.; Gray, A. I.; Harvey, A. L.; Hatziieremia, S.; et al. Inhibitory Kappa B Kinase α (IKKα) Inhibitors That Recapitulate Their Selectivity in Cells against Isoform-Related Biomarkers. J. Med. Chem. 2017, 60 (16), 7043-7066. (23) Wang, R.-W.; Gold, B. A Facile Synthetic Approach to 7-Deazaguanine Nucleosides via a Boc Protection Strategy. Org. Lett. 2009, 11 (11), 2465-2468. (24) Brooks, A. F.; Garcia, G. A.; Showalter, H. D. H. A short, concise synthesis of queuine. Tetrahedron Lett. 2010, 51 (32), 4163-4165. (25) Chen, C.-C.; Rajagopal, B.; Liu, X. Y.; Chen, K. L.; Tyan, Y.-C.; Lin, F.; Lin, P.-C. A mild removal of Fmoc group using sodium azide. Amino Acids 2014, 46 (2), 367-374. (26) Dubois, D. Y.; Blaise, M.; Becker, H. D.; Campanacci, V.; Keith, G.; Giege, R.; Cambillau, C.; Lapointe, J.; Kern, D. An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (20), 7530-7535. |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 325871075 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 213249687 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 326039064 |