Abstract
A new path for quantum gas experiments with high resolution is a combination of the advantages of highly uniform optical lattices with the flexibility offered by optical tweezer arrays. Those hybrid tweezer lattices require performant microscope objectives that can simultaneously image individual atoms in the optical lattice and generate diffraction-limited optical tweezers for single-site addressing. In this thesis the imaging performance is characterized for two custom made high-resolution objectives at 399 and 532 nm as well as the tweezer-generation capabilities with 532 nm light. To this end, we build and optimize an optical test setup that can perform automated focus scans with sub-wavelength axial step size to test the objective point spread function and optical tweezer generation. We confirm diffraction-limited operation in both cases for each objective and in a field of view of 100x100 μm. Furthermore we generate 2D tweezer arrays using two acousto-optical deflectors in a crossed configuration and characterize their shape in 3D. An in-depth discussion on the error estimates and various compensation techniques used for analysis is presented as well. Finally, we successfully integrate the objective into the main setup including the trapping and imaging of ultracold ytterbium atoms in a 5x5 optical tweezer array.
Dokumententyp: | LMU München: Studienabschlussarbeit |
---|---|
Keywords: | Optical tweezer; Ultracold atoms; Quantum simulation; Microscopy; Optics; Quantum physics; Laser physics; Diffraction limit |
Fakultät: | Physik > Studienabschlussarbeiten |
Institut oder Departement: | Lehrstuhl für Quantenphysik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-108487-0 |
Sprache: | Englisch |
Dokumenten ID: | 108487 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Jan. 2024, 08:36 |
Letzte Änderungen: | 04. Jan. 2024, 11:38 |
Literaturliste: | I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Reviews of Modern Physics 80, 885–964 (2008) H.-J. Briegel, T. Calarco, D. Jaksch, J. I. Cirac, and P. Zoller, Quantum computing with neutral atoms, Journal of Modern Optics 47, 415–451 (2000) J. Ye, H. J. Kimble, and H. Katori, Quantum state engineering and precision metrology using state-insensitive light traps, Science 320, 1734–1738 (2008) W. Li, I. Mourachko, M.W. Noel, and T. F. Gallagher, Millimeter-wave spectroscopy of cold rb rydberg atoms in a magneto-optical trap: quantum defects of the ns , np , and nd series, Physical Review A 67, 052502 (2003) M. Greiner and S. Fölling, Optical lattices, Nature 453, 736–738 (2008) H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and N. Goldman, Four-dimensional quantum hall effect with ultracold atoms, Physical Review Letters 115, 195303 (2015) L.-M. Duan, E. Demler, and M. D. Lukin, Controlling spin exchange interactions of ultracold atoms in optical lattices, Physical Review Letters 91, 090402 (2003) W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, Single-atom optical clock with high accuracy, Physical Review Letters 97, 020801 (2006) D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman, Fast ground state manipulation of neutral atoms in microscopic optical traps, Physical Review Letters 96, 063001 (2006) H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, Ultrastable optical clock with neutral atoms in an engineered light shift trap, Physical Review Letters 91, 173005 (2003) A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Quantum computing with alkalineearth- metal atoms, Physical Review Letters 101, 170504 (2008) A. J. Daley, Quantum computing and quantum simulation with group-II atoms, Quantum Information Processing 10, 865–884 (2011) C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Reviews of Modern Physics 82, 1225–1286 (2010) D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of rydberg excitation in an ultracold gas, Physical Review Letters 93, 063001 (2004) J. N. A. Matthews, Commercial optical traps emerge from biophysics labs, Physics Today 62, 26–28 (2009) W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice, Nature 462, 74–77 (2009) L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V. Ramasesh, W. S. Bakr, T. Lompe, and M. W. Zwierlein, Quantum-gas microscope for fermionic atoms, Physical Review Letters 114, 193001 (2015) C. Gross and W. S. Bakr, Quantum gas microscopy for single atom and spin detection, Nature Physics 17, 1316–1323 (2021) J. Koepsell, S. Hirthe, D. Bourgund, P. Sompet, J. Vijayan, G. Salomon, C. Gross, and I. Bloch, Robust bilayer charge pumping for spin- and density-resolved quantum gas microscopy, Physical Review Letters 125, 010403 (2020) J. Yang, L. Liu, J. Mongkolkiattichai, and P. Schauss, Site-resolved imaging of ultracold fermions in a triangular-lattice quantum gas microscope, PRX Quantum 2, 020344 (2021) C. Sträter, S. C. L. Srivastava, and A. Eckardt, Floquet realization and signatures of one-dimensional anyons in an optical lattice, Physical Review Letters 117, 205303 (2016) A. Ashkin and J. M. Dziedzic, Optical trapping and manipulation of viruses and bacteria, Science 235, 1517–1520 (1987) N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, Sub-poissonian loading of single atoms in a microscopic dipole trap, Nature 411, 1024–1027 (2001) C. Tuchendler, A. M. Lance, A. Browaeys, Y. R. P. Sortais, and P. Grangier, Energy distribution and cooling of a single atom in an optical tweezer, Physical Review A 78, 033425 (2008) A. M. Kaufman, B. J. Lester, and C. A. Regal, Cooling a single atom in an optical tweezer to its quantum ground state, Physical Review X 2, 041014 (2012) K.-N. Schymik, S. Pancaldi, F. Nogrette, D. Barredo, J. Paris, A. Browaeys, and T. Lahaye, Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures, Physical Review Applied 16, 034013 (2021) M. A. Norcia, A. W. Young, W. J. Eckner, E. Oelker, J. Ye, and A. M. Kaufman, Seconds-scale coherence on an optical clock transition in a tweezer array, Science 366, 93–97 (2019) A. W. Young, W. J. Eckner, N. Schine, A. M. Childs, and A. M. Kaufman, Tweezerprogrammable 2d quantum walks in a hubbard-regime lattice, Feb. 2, 2022, arXiv:2202. 01204 J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres, 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays, Physical Review Letters 122, 173201 (2019) C. Sheng, J. Hou, X. He, P. Xu, K.Wang, J. Zhuang, X. Li, M. Liu, J.Wang, and M. Zhan, Efficient preparation of two-dimensional defect-free atom arrays with nearfewest sorting-atom moves, Physical Review Research 3, 023008 (2021) P. Scholl, M. Schuler, H. J.Williams, A. A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang, T. Lahaye, A. M. Läuchli, and A. Browaeys, Quantum simulation of 2d antiferromagnets with hundreds of rydberg atoms, Nature 595, 233–238 (2021) Y.Wang, S. Shevate, T. M.Wintermantel, M. Morgado, G. Lochead, and S. Whitlock, Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays, npj Quantum Information 6, 54 (2020) H. Kim, W. Lee, H.-g. Lee, H. Jo, Y. Song, and J. Ahn, In situ single-atom array synthesis using dynamic holographic optical tweezers, Nature Communications 7, 13317 (2016) S. Saskin, J. T.Wilson, B. Grinkemeyer, and J. D. Thompson, Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array, Physical Review Letters 122, 143002 (2019) D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys, An atomby- atom assembler of defect-free arbitrary two-dimensional atomic arrays, Science 354, 1021–1023 (2016) S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuleti´c, and M. D. Lukin, Quantum phases of matter on a 256-atom programmable quantum simulator, Nature 595, 227–232 (2021) K.-N. Schymik, B. Ximenez, E. Bloch, D. Dreon, A. Signoles, F. Nogrette, D. Barredo, A. Browaeys, and T. Lahaye, In situ equalization of single-atom loading in large-scale optical tweezer arrays, Physical Review A 106, 022611 (2022) G. Audi, O. Bersillon, J. Blachot, and A. Wapstra, The nubase evaluation of nuclear and decay properties, Nuclear Physics A 729, 3–128 (2003) W. Demtröder, Experimentalphysik 2, Springer-Lehrbuch (Springer Berlin Heidelberg, Berlin, Heidelberg, 2017) J. E. Greivenkamp, Field guide to geometrical optics, SPIE field guides v. FG01 (SPIE Press, Bellingham, Wash, 2004), 117 pp. R. Kingslake, Lenses in photography: the practical guide to optics for photographers (Case-Hoyt Corp. for Garden City Books, Garden City, N.Y, 1951) J. W. Goodman, Introduction to fourier optics (Roberts and Company Publishers, 2005), 491 pp. M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, 1986), 672 pp. G. B. Airy, On the diffraction of an object-glass with circular aperture, Vol. 5 (Transactions of the Cambridge Philosophical Society, 1835), 476 pp. B. R. Masters, Superresolution optical microscopy: the quest for enhanced resolution and contrast, Vol. 227, Springer Series in Optical Sciences (Springer International Publishing, Cham, 2020) T. Latychevskaia, Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes, Applied Optics 58, 3597 (2019) F. Lord Rayleigh, XXXI. investigations in optics, with special reference to the spectroscope, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8, Publisher: Taylor & Francis, 261–274 (1879) M. Born and E. Wolf, Principles of optics: 60th anniversary edition, 7th ed. (Cambridge University Press, Dec. 19, 2019) B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, Gaussian approximations of fluorescence microscope point-spread function models, Applied Optics 46, 1819 (2007) V. Lakshminarayanan and A. Fleck, Zernike polynomials: a guide, Journal of Modern Optics 58, 545–561 (2011) J. F. Bille, ed., High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics (Springer International Publishing, Cham, 2019) F. Wallner, New Tools for Controlling Strontium Atoms with High Spectral and Spatial Resolution, (2020) V. N. Mahajan, Strehl ratio for primary aberrations in terms of their aberration variance, Journal of the Optical Society of America 73, 860 (1983) T. S. Ross, Limitations and applicability of the maréchal approximation, Applied Optics 48, 1812 (2009) R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Optical dipole traps for neutral atoms, Feb. 24, 1999, arXiv:physics/9902072 C. J. Foot, Atomic physics, Oxford master series in physics 7. Atomic, Optical, and laser physics, OCLC: ocm57478010 (Oxford University Press, Oxford ; New York, 2005), 331 pp. J.-M. Liu, Photonic devices (Cambridge University Press, 2005) A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A. Browaeys, Light-assisted collisions between a few cold atoms in a microscopic dipole trap, Physical Review A 85, 062708 (2012) L. C. Roberts Jr., M. D. Perrin, F. Marchis, A. Sivaramakrishnan, R. B. Makidon, J. C. Christou, B. A. Macintosh, L. A. Poyneer, M. A. van Dam, and M. Troy, Is that really your strehl ratio?, in (Oct. 25, 2004), p. 504 A. P. Dhawan, R. M. Rangayyan, and R. Gordon, Image restoration by wiener deconvolution in limited-view computed tomography, Applied Optics 24, 4013 (1985) S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, Image quality improvement in optical coherence tomography using lucy–richardson deconvolution algorithm, Applied Optics 52, 5663 (2013) |