Abstract
The acquisition of intravoxel incoherent motion (IVIM) data and diffusion tensor imaging (DTI) data from the brain can be integrated into a single measurement, which offers the possibility to determine orientation-dependent (tensorial) perfusion parameters in addition to established IVIM and DTI parameters. The purpose of this study was to evaluate the feasibility of such a protocol with a clinically feasible scan time below 6 min and to use a model-selection approach to find a set of DTI and IVIM tensor parameters that most adequately describes the acquired data. Diffusion-weighted images of the brain were acquired at 3 T in 20 elderly participants with cerebral small vessel disease using a multiband echoplanar imaging sequence with 15 b-values between 0 and 1000 s/mm2 and six non-collinear diffusion gradient directions for each b-value. Seven different IVIM-diffusion models with 4 to 14 parameters were implemented, which modeled diffusion and pseudo-diffusion as scalar or tensor quantities. The models were compared with respect to their fitting performance based on the goodness of fit (sum of squared fit residuals, chi2) and their Akaike weights (calculated from the corrected Akaike information criterion). Lowest chi2 values were found using the model with the largest number of model parameters. However, significantly highest Akaike weights indicating the most appropriate models for the acquired data were found with a nine-parameter IVIM–DTI model (with isotropic perfusion modeling) in normal-appearing white matter (NAWM), and with an 11-parameter model (IVIM–DTI with additional pseudo-diffusion anisotropy) in white matter with hyperintensities (WMH) and in gray matter (GM). The latter model allowed for the additional calculation of the fractional anisotropy of the pseudo-diffusion tensor (with a median value of 0.45 in NAWM, 0.23 in WMH, and 0.36 in GM), which is not accessible with the usually performed IVIM acquisitions based on three orthogonal diffusion-gradient directions.
Item Type: | Journal article |
---|---|
Faculties: | Medicine > Medical Center of the University of Munich > Clinic and Polyclinic for Radiology |
Subjects: | 600 Technology > 610 Medicine and health |
URN: | urn:nbn:de:bvb:19-epub-108823-5 |
ISSN: | 0952-3480 |
Language: | English |
Item ID: | 108823 |
Date Deposited: | 21. Mar 2024, 12:16 |
Last Modified: | 21. Mar 2024, 12:16 |