Logo Logo
Hilfe
Hilfe
Switch Language to English

Rabe, Moritz ORCID logoORCID: https://orcid.org/0000-0002-7085-4066; Palacios, Miguel A.; van Sörnsen de Koste, John R.; Eze, Chukwuka ORCID logoORCID: https://orcid.org/0000-0003-3779-1398; Hillbrand, Martin; Belka, Claus; Landry, Guillaume ORCID logoORCID: https://orcid.org/0000-0003-1707-4068; Senan, Suresh ORCID logoORCID: https://orcid.org/0000-0003-3995-2204 und Kurz, Christopher (2023): Comparison of MR‐guided radiotherapy accumulated doses for central lung tumors with non‐adaptive and online adaptive proton therapy. In: Medical Physics, Bd. 50, Nr. 5: S. 2625-2636 [PDF, 474kB]

Abstract

Background Stereotactic body radiation therapy (SBRT) of central lung tumors with photon or proton therapy has a risk of increased toxicity. Treatment planning studies comparing accumulated doses for state-of-the-art treatment techniques, such as MR-guided radiotherapy (MRgRT) and intensity modulated proton therapy (IMPT), are currently lacking.

Purpose We conducted a comparison of accumulated doses for MRgRT, robustly optimized non-adaptive IMPT, and online adaptive IMPT for central lung tumors. A special focus was set on analyzing the accumulated doses to the bronchial tree, a parameter linked to high-grade toxicities.

Methods Data of 18 early-stage central lung tumor patients, treated at a 0.35 T MR-linac in eight or five fractions, were analyzed. Three gated treatment scenarios were compared: (S1) online adaptive MRgRT, (S2) non-adaptive IMPT, and (S3) online adaptive IMPT. The treatment plans were recalculated or reoptimized on the daily imaging data acquired during MRgRT, and accumulated over all treatment fractions. Accumulated dose-volume histogram (DVH) parameters of the gross tumor volume (GTV), lung, heart, and organs-at-risk (OARs) within 2 cm of the planning target volume (PTV) were extracted for each scenario and compared in Wilcoxon signed-rank tests between S1 & S2, and S1 & S3.

Results The accumulated GTV D98% was above the prescribed dose for all patients and scenarios. Significant reductions (p < 0.05) of the mean ipsilateral lung dose (S2: –8%; S3: –23%) and mean heart dose (S2: –79%; S3: –83%) were observed for both proton scenarios compared to S1. The bronchial tree D0.1cc was significantly lower for S3 (S1: 48.1 Gy; S3: 39.2 Gy; p = 0.005), but not significantly different for S2 (S2: 45.0 Gy; p = 0.094), compared to S1. The D0.1cc for S2 and S3 compared to S1 was significantly (p < 0.05) smaller for OARs within 1–2 cm of the PTV (S1: 30.2 Gy; S2: 24.6 Gy; S3: 23.1 Gy), but not significantly different for OARs within 1 cm of the PTV.

Conclusions A significant dose sparing potential of non-adaptive and online adaptive proton therapy compared to MRgRT for OARs in close, but not direct proximity of central lung tumors was identified. The near-maximum dose to the bronchial tree was not significantly different for MRgRT and non-adaptive IMPT. Online adaptive IMPT achieved significantly lower doses to the bronchial tree compared to MRgRT.

Dokument bearbeiten Dokument bearbeiten