Abstract
Tailoring critical light-matter coupling is a fundamental challenge of nanophotonics, impacting fields from higher harmonic generation and energy conversion to surface-enhanced spectroscopy. Plasmonic perfect absorbers (PAs), where resonant antennas couple to their mirror images in adjacent metal films, excel at obtaining different coupling regimes by tuning the antenna-film gap size. However, practical PA applications require constant gap size, making it impossible to maintain critical coupling beyond singular wavelengths. Here, a new approach for plasmonic PAs is introduced by combining mirror-coupled resonances with the unique loss engineering capabilities of plasmonic quasi-bound states in the continuum. This novel combination allows to tailor the light–matter interaction within the under-coupling, over-coupling, and critical coupling regimes using flexible tuning knobs including asymmetry parameter, dielectric gap, and geometrical scaling factor. The study demonstrates a pixelated PA metasurface with optimal absorption over a broad range of mid-infrared wavenumbers (950–2000 cm−1) using only a single gap size and applies it for multispectral surface-enhanced molecular spectroscopy. Moreover, the asymmetry parameter enables convenient adjustment of the quality factor and resonance amplitude. This concept expands the capabilities and flexibility of traditional gap-tuned PAs, opening new perspectives for miniaturized sensing platforms towards on-chip and in situ detection.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-109003-2 |
ISSN: | 1863-8880 |
Sprache: | Englisch |
Dokumenten ID: | 109003 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Feb. 2024, 12:26 |
Letzte Änderungen: | 05. Feb. 2024, 12:26 |