ORCID: https://orcid.org/0000-0002-1231-4985; Kornowicz, Jaroslaw; Heid, Stefan; Thommes, Kirsten
ORCID: https://orcid.org/0000-0002-8057-7162 und Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108
(Oktober 2023):
Comparing Humans and Algorithms in Feature Ranking: A Case-Study in the Medical Domain.
Lernen, Wissen, Daten, Analysen (LWDA), Marburg, Germany, 9-11 October 2023.
Leyer, Michael und Wichmann, Johannes (Hrsg.):
In: Lernen, Wissen, Daten, Analysen (LWDA) Conference Proceedings,
Bd. 3630
CEUR-WS.org. S. 430-441
[PDF, 953kB]

Abstract
The selection of useful, informative, and meaningful features is a key prerequisite for the successful application of machine learning in practice, especially in knowledge-intense domains like decision support. Here, the task of feature selection, or ranking features by importance, can, in principle, be solved automatically in a data-driven way but also supported by expert knowledge. Besides, one may of course, conceive a combined approach, in which a learning algorithm closely interacts with a human expert. In any case, finding an optimal approach requires a basic understanding of human capabilities in judging the importance of features compared to those of a learning algorithm. Hereto, we conducted a case study in the medical domain, comparing feature rankings based on human judgment to rankings automatically derived from data. The quality of a ranking is determined by the performance of a decision list processing features in the order specified by the ranking, more specifically by so-called probabilistic scoring systems.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
URN: | urn:nbn:de:bvb:19-epub-109222-8 |
Sprache: | Englisch |
Dokumenten ID: | 109222 |
Datum der Veröffentlichung auf Open Access LMU: | 13. Feb. 2024 15:38 |
Letzte Änderungen: | 14. Okt. 2024 11:57 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 438445824 |