Abstract
Given a stochastic differential equation with path-dependent coefficients driven by a multidimensional Wiener process, we show that the support of the law of the solution is given by the image of the Cameron–Martin space under the flow of mild solutions to a system of path-dependent ordinary differential equations. Our result extends the Stroock–Varadhan support theorem for diffusion processes to the case of SDEs with path-dependent coefficients. The proof is based on functional Itô calculus.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 03044149 |
Sprache: | Englisch |
Dokumenten ID: | 109931 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Mrz. 2024, 07:14 |
Letzte Änderungen: | 08. Sep. 2024, 17:49 |