Abstract
Given a stochastic differential equation with path-dependent coefficients driven by a multidimensional Wiener process, we show that the support of the law of the solution is given by the image of the Cameron–Martin space under the flow of mild solutions to a system of path-dependent ordinary differential equations. Our result extends the Stroock–Varadhan support theorem for diffusion processes to the case of SDEs with path-dependent coefficients. The proof is based on functional Itô calculus.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Mathematics > Workgroup Financial Mathematics |
Subjects: | 500 Science > 510 Mathematics |
ISSN: | 03044149 |
Language: | English |
Item ID: | 109931 |
Date Deposited: | 19. Mar 2024, 07:14 |
Last Modified: | 19. Mar 2024, 07:14 |