Abstract
We analyze multidimensional Markovian integral equations that are formulated with a progressive time-inhomogeneous Markov process that has Borel measurable transition probabilities. In the case of a path process of a path-dependent diffusion, the solutions to these integral equations lead to the concept of mild solutions to path-dependent partial differential equations (PPDEs). Our goal is to establish uniqueness, stability, existence and non-extendibility of solutions among a certain class of maps. By requiring the Feller continuity of the Markov process, we give weak conditions under which solutions become continuous. Moreover, we provide a multidimensional Feynman–Kac formula and a one-dimensional global existence and uniqueness result.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0246-0203 |
Sprache: | Englisch |
Dokumenten ID: | 109932 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Mrz. 2024, 11:35 |
Letzte Änderungen: | 08. Sep. 2024, 17:52 |