Logo Logo
Hilfe
Hilfe
Switch Language to English

Gabor, Thomas; Lachner, Michael; Kraus, Nico; Roch, Christoph; Stein, Jonas; Ratke, Daniel und Linnhoff-Popien, Claudia (2022): Modifying the quantum-assisted genetic algorithm. GECCO '22, Genetic and Evolutionary Computation Conference, Boston Massachusetts, July 9 - 13, 2022. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, New York: Association for Computing Machinery. S. 2205-2213

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Based on the quantum-assisted genetic algorithm (QAGA) [11] and related approaches we introduce several modifications of QAGA to search for more promising solvers on (at least) graph coloring problems, knapsack problems, Boolean satisfiability problems, and an equal combination of these three. We empirically test the efficiency of these algorithmic changes on a purely classical version of the algorithm (simulated-annealing-assisted genetic algorithm, SAGA) and verify the benefit of selected modifications when using quantum annealing hardware. Our results point towards an inherent benefit of a simpler and more flexible algorithm design.

Dokument bearbeiten Dokument bearbeiten