Abstract
Motivated by empirical evidence of long range dependence in macroeconomic variables like interest rates we propose a fractional Brownian motion driven model to describe the dynamics of the short and the default rate in a bond market. Aiming at results analogous to those for affine models we start with a bivariate fractional Vasicek model for short and default rate, which allows for fairly explicit calculations. We calculate the prices of corresponding defaultable zero-coupon bonds by invoking Wick calculus. Applying a Girsanov theorem we derive today’s prices of European calls and compare our results to the classical Brownian model.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Mathematics > Workgroup Financial Mathematics |
Subjects: | 500 Science > 510 Mathematics |
ISSN: | 03044149 |
Language: | English |
Item ID: | 110043 |
Date Deposited: | 26. Mar 2024, 12:24 |
Last Modified: | 26. Mar 2024, 12:24 |