Abstract
We establish the existence of minimizers in a rather general setting of dynamic stochastic optimization in finite discrete time without assuming either convexity or coercivity of the objective function. We apply this to prove the existence of optimal investment strategies for non-concave utility maximization problems in financial market models with frictions, a first result of its kind. The proofs are based on the dynamic programming principle whose validity is established under quite general assumptions.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1862-9679 |
Sprache: | Englisch |
Dokumenten ID: | 110066 |
Datum der Veröffentlichung auf Open Access LMU: | 26. Mrz. 2024, 12:43 |
Letzte Änderungen: | 26. Mrz. 2024, 12:43 |