Abstract
This paper proves the existence of optimal stopping times via elementary functional analytic arguments. The problem is first relaxed into a convex optimization problem over a closed convex subset of the unit ball of the dual of a Banach space. The existence of optimal solutions then follows from the Banach-Alaoglu compactness theorem and the Krein-Millman theorem on extreme points of convex sets. This approach seems to give the most general existence results known to date. Applying convex duality to the relaxed problem gives a dual problem and optimality conditions in terms of martingales that dominate the reward process.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Sprache: | Englisch |
Dokumenten ID: | 110074 |
Datum der Veröffentlichung auf Open Access LMU: | 26. Mrz. 2024, 12:29 |
Letzte Änderungen: | 08. Sep. 2024, 17:54 |