Logo Logo
Hilfe
Hilfe
Switch Language to English

Pennanen, Teemu und Perkkiö, Ari-Pekka ORCID logoORCID: https://orcid.org/0000-0002-9787-0330 (2020): Optimal Stopping Without Snell Envelopes. In: Proceedings of the American Mathematical Society, Bd. 152, Nr. 4

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

This paper proves the existence of optimal stopping times via elementary functional analytic arguments. The problem is first relaxed into a convex optimization problem over a closed convex subset of the unit ball of the dual of a Banach space. The existence of optimal solutions then follows from the Banach-Alaoglu compactness theorem and the Krein-Millman theorem on extreme points of convex sets. This approach seems to give the most general existence results known to date. Applying convex duality to the relaxed problem gives a dual problem and optimality conditions in terms of martingales that dominate the reward process.

Dokument bearbeiten Dokument bearbeiten