Abstract
Efficient and quick detection of problems is an essential task in online process monitoring. Many anomaly detection approaches excel in finding local deviations. We propose a novel approach that tracks local deviations over multiple process instances and visualizes correlations of deviation points. PErrCas provides knowledge about current cascades of deviations to give process analysts a starting point for rational root-cause analysis if processes leave their in-control parameters. PErrCas monitors deviations online and maintains cascades of varying timespans. Hence, our approach avoids defining an observation window beforehand, which is a significant advantage due to its impracticability to predefine expected cascade properties in exploratory scenarios.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1865-1348 |
Bemerkung: | ISBN 978-3-030-98581-3 |
Sprache: | Englisch |
Dokumenten ID: | 110146 |
Datum der Veröffentlichung auf Open Access LMU: | 26. Mrz. 2024, 14:45 |
Letzte Änderungen: | 26. Mrz. 2024, 14:45 |