Abstract
Novel multimodal imaging methods are capable of generating extensive, super high resolution datasets for preclinical research. Yet, a massive lack of annotations prevents the broad use of deep learning to analyze such data. In this paper, we introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours. We construct a dualpathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor. Our method performs two concurrent tasks: domain adaptation and semantic synthesis, which, to our knowledge, has not been done before. The generated images yield significant quantitative improvement compared to existing methods that specialize in either of these tasks. To validate the quality of synthesis, we train segmentation networks on a dataset augmented with the synthetic data, substantially improving the segmentation over the baseline.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
Ort: | Piscataway, NJ |
Sprache: | Englisch |
Dokumenten ID: | 110184 |
Datum der Veröffentlichung auf Open Access LMU: | 28. Mrz. 2024, 07:00 |
Letzte Änderungen: | 28. Mrz. 2024, 07:00 |