Logo Logo
Hilfe
Hilfe
Switch Language to English

Cordell, Darcy; Hill, Graham; Bachmann, Olivier; Moorkamp, Max und Huber, Christian (2022): Estimating melt fraction in silicic systems using Bayesian inversion of magnetotelluric data. In: Journal of Volcanology and Geothermal Research, Bd. 423, 107470

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

The location, volume and physical states of magma reservoirs are primary controls on the eruptive behavior of volcanic systems. Fundamental to understanding and monitoring these systems is the ability to identify reservoir size and physical properties, in particular melt fraction which plays an important role in the rheology and stability of a magmatic system. Large silicic volcanic eruptions in the geological record suggest that extensive pockets of melt-rich silicic magma must exist in the subsurface but such melt pockets have not been detected by geophysics. This has led to the question of whether the reservoirs that feed large volcanic eruptions are only melt-rich for a short time and thus would only be detected by geophysics shortly prior to an eruption. Magnetotelluric data measure the electrical resistivity of the subsurface and are sensitive to subsurface fluids and partial melts making it a powerful tool for imaging subvolcanic magma reservoirs. This study examines the ability for magnetotelluric data to accurately estimate melt fraction using both stochastic Bayesian inversion and deterministic regularized inversion. Results from synthetic modelling indicate that magnetotelluric data are best able to predict the melt fraction for the thick melt-rich layer using both inversion methods, though both methods under-estimate the true amount of melt. In addition, magnetotelluric data can accurately detect changes in melt fraction from crystal rich mush (0.1 melt fraction) to melt-rich magma (0.9 melt fraction) for thick layers. Thickness is a key parameter which provides a method to assess the total volume of melt present, but it is difficult to estimate using smooth regularized inversions. Fixed-dimension Bayesian inversions provide estimates of layer thickness and their uncertainties and it is shown that estimates of total volume of melt are more accurate for both thin (0.2 km) and thick (1 km) layers than individual estimates of melt fraction or thickness alone. The melt fraction of the thin melt-rich layer is under-estimated using both the deterministic inversion method and the most probable solution of the Bayesian inversion. The Bayesian distribution of solutions has long tails which includes the true solution and better represents the uncertainty of the modelled parameters. As we consider past large melt-rich caldera eruptions at Taupo (New Zealand), Toba (Indonesia), Yellowstone and Long Valley (USA), our analysis suggests that thin melt-rich, potentially eruptible zones involved in large (e.g. >500 km(3)) eruptions could be systematically misinterpreted as thicker non-eruptible crystal-rich mush zones. Testing the sensitivity of MT to detect melt accumulation in active magmatic systems has important implications for volcanic hazard assessment and the use of Bayesian inversions allows for a better understanding of the range of possible interpretations. (C) 2022 The Authors. Published by Elsevier B.V.

Dokument bearbeiten Dokument bearbeiten