Abstract
We give a computational interpretation to an abstract formulation of Krull's theorem, by analysing its classical proof based on Zorn's lemma. Our approach is inspired by proof theory, and uses a form of update recursion to replace the existence of maximal ideals. Our main result allows us to derive, in a uniform way, algorithms which compute witnesses for existential theorems in countable abstract algebra. We give a number of concrete examples of this phenomenon, including the prime ideal theorem and Krull's theorem on valuation rings. (C) 2021 Elsevier Inc. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0890-5401 |
Sprache: | Englisch |
Dokumenten ID: | 111056 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:22 |
Letzte Änderungen: | 13. Aug. 2024, 12:47 |