Abstract
We study the integrated density of states of one-dimensional random operators acting on l(2) (Z) of the form T + V-omega where T is a Laurent (also called bi-infinite Toeplitz) matrix and V-omega is an Anderson potential generated by i.i.d. random variables. We assume that the operator T is associated with a bounded, Holder-continuous symbol f , that attains its minimum at a finite number of points. We allow for f to attain its minima algebraically. The resulting operator T is long-range with weak (algebraic) off-diagonal decay. We prove that this operator exhibits Lifshitz tails at the lower edge of the spectrum with an exponent given by the integrated density of states of T at the lower spectral edge. The proof relies on generalizations of Dirichlet-Neumann bracketing to the long-range setting and an adaption of Temple's inequality.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1424-0637 |
Sprache: | Englisch |
Dokumenten ID: | 111080 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:23 |
Letzte Änderungen: | 02. Apr. 2024, 07:23 |