Abstract
We show that partial mass concentration can happen for stationary solutions of aggregation-diffusion equations with homogeneous attractive kernels in the fast diffusion range. More precisely, we prove that the free energy admits a radial global minimizer in the set of probability measures which may have part of its mass concentrated in a Dirac delta at a given point. In the case of the quartic interaction potential, we find the exact range of the diffusion exponent where concentration occurs in space dimensions N >= 6. We then provide numerical computations which suggest the occurrence of mass concentration in all dimensions N >= 3, for homogeneous interaction potentials with higher power.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Analysis, Mathematische Physik und Numerik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 0218-2025 |
Sprache: | Englisch |
Dokumenten ID: | 111116 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:23 |
Letzte Änderungen: | 13. Aug. 2024, 12:50 |