Abstract
We define a Schrodinger operator on the half-space with a dis-continuous magnetic field having a piecewise-constant strength and a uniform direction. Motivated by applications in the theory of superconductivity, we study the infimum of the spectrum of the operator. We give sufficient con-ditions on the strength and the direction of the magnetic field such that the aforementioned infimum is an eigenvalue of a reduced model operator on the half-plane. We use the Schrodinger operator on the half-space to study a new semiclassical problem in bounded domains of the space, considering a magnetic Neumann Laplacian with a piecewise-constant magnetic field. We then make precise the localization of the semiclassical ground state near specific points at the discontinuity jump of the magnetic field.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1078-0947 |
Sprache: | Englisch |
Dokumenten ID: | 111135 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:23 |
Letzte Änderungen: | 02. Apr. 2024, 07:23 |