Abstract
Let N/K be a finite Galois extension of p-adic number fields, and let rho(nr): G(K) -> Gl(r) (Z(p)) be an r-dimensional unramified representation of the absolute Galois group G(K), which is the restriction of an unramified representation rho(nr)(Qp): G(Qp) -> (Z(p)). In this paper, we consider the Gal( N/K)-equivariant local epsilon-conjecture for the p-adic representation T = Z(p)(r)(1)(rho(nr)). For example, if A is an abelian variety of dimension r defined over Q(p) with good ordinary reduction, then the Tate module T = T-p(A) over cap associated to the formal group A of (A) over cap is a p-adic representation of this form. We prove the conjecture for all tame extensions N/K and a certain family of weakly and wildly ramified extensions N/K. This generalizes previous work of Izychev and Venjakob in the tame case and of the authors in the weakly and wildly ramified case.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 0008-414X |
Sprache: | Englisch |
Dokumenten ID: | 111138 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:23 |
Letzte Änderungen: | 02. Apr. 2024, 07:23 |