Abstract
We consider the linear BCS equation, determining the BCS critical temperature, in the presence of a boundary, where Dirichlet boundary conditions are imposed. In the one-dimen-sional case with point interactions, we prove that the critical temperature is strictly larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave function localizes near the boundary, an effect that cannot be modeled by effective Neumann boundary conditions on the order parameter as often imposed in Ginzburg-Landau theory. We also show that the relative shift in critical temperature vanishes if the coupling constant either goes to zero or to infinity.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Analysis, Mathematische Physik und Numerik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1664-039X |
Sprache: | Englisch |
Dokumenten ID: | 111139 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:23 |
Letzte Änderungen: | 13. Aug. 2024, 13:05 |