Abstract
The survey is dedicated to a celebrated series of quantitave results, developed by the Lithuanian school of probability, on the normal approximation for a real-valued random variable. The key ingredient is a bound on cumulants of the type vertical bar kappa(j)(X)vertical bar <= j!(1+gamma)/Delta(j-2), which is weaker than Cramer's condition of finite exponential moments. We give a self-contained proof of some of the main lemmas in a book by Saulis and StatuleviCius (1989), and an accessible introduction to the Cramer-Petrov series. In addition, we explain relations with heavy-tailed Weibull variables, moderate deviations, and mod-phi convergence. We discuss some methods for bounding cumulants such as summability of mixed cumulants and dependency graphs, and briefly review a few recent applications of the method of cumulants for the normal approximation.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1549-5787 |
Sprache: | Englisch |
Dokumenten ID: | 111148 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:23 |
Letzte Änderungen: | 02. Apr. 2024, 07:23 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 318196255 |