Abstract
In the field of artificial photosynthesis with semiconductor light harvesters, the default cocatalyst morphologies are isotropic, 0D nanoparticles. Herein, the use of highly anisotropic 2D ruthenium oxide nanosheet (RONS) cocatalysts as an approach to enhance photocatalytic oxygen evolution (OER) rates on commercial WO3 nanoparticles (0D light harvester) is presented. At optimal cocatalyst loadings and identical photocatalysis conditions, WO3 impregnated with RONS (RONS/WO3) shows a fivefold increase in normalized photonic efficiency compared to when it is impregnated with conventional ruthenium oxide (rutile) nanoparticles (RONP/WO3). The superior RONS/WO3 performance is attributed to two special properties of the RONS: i) lower electrochemical water oxidation overpotential for RONS featuring highly active edge sites, and ii) decreased parasitic light absorption on RONS. Evidence is presented that OER photocatalytic performance can be doubled with control of RONS edges and it is shown that compared to WO3 impregnated with RONP, the advantageous optical properties and geometry of RONS decrease the fraction of light absorbed by the cocatalyst, thus reducing the parasitic light absorption on the RONS/WO3 composite. Therefore, the results presented in the current study are expected to promote engineering of cocatalyst morphology as a complementary concept to optimize light harvester-cocatalyst composites for enhanced photocatalytic efficiency.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 1614-6832 |
Sprache: | Englisch |
Dokumenten ID: | 111297 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:25 |
Letzte Änderungen: | 02. Apr. 2024, 07:25 |