Abstract
In order to deliver effective care, health management must consider the distinctive trajectories of chronic diseases. These diseases recurrently undergo acute, unstable, and stable phases, each of which requires a different treatment regimen. However, the correct identification of trajectory phases, and thus treat-ment regimens, is challenging. In this paper, we propose a data-driven, dynamic approach for identifying trajectory phases of chronic diseases and thus suggesting treatment regimens. Specifically, we develop a novel variable-duration copula hidden Markov model (VDC-HMMX). In our VDC-HMMX, the trajectory is modeled as a series of latent states with acute, stable, and unstable phases, which are eventually recov-ered. We demonstrate the effectiveness of our VDC-HMMX model on the basis of a longitudinal study with 928 patients suffering from low back pain. A myopic classifier identifies correct treatment regimens with a balanced accuracy of slightly above 70%. In comparison, our VDC-HMMX model is correct with a balanced accuracy of 83.65%. This thus highlights the value of longitudinal monitoring for chronic disease management.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Betriebswirtschaft |
Themengebiete: | 300 Sozialwissenschaften > 330 Wirtschaft |
ISSN: | 0377-2217 |
Sprache: | Englisch |
Dokumenten ID: | 112106 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:33 |
Letzte Änderungen: | 02. Apr. 2024, 07:33 |