Abstract
Interpolating unstructured data using barycentric coordinates becomes infeasible at high dimensions due to the prohibitive memory requirements of building a Delaunay triangulation. We present a new algorithm to construct ad-hoc simplices that are empirically guaranteed to contain the target coordinates, based on a nearest neighbor heuristic and an iterative dimensionality reduction through projection. We use these simplices to interpolate the astrophysical cooling function A and show that this new approach produces good results with just a fraction of the previously required memory. (C) 2022 Elsevier Inc. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0021-9991 |
Sprache: | Englisch |
Dokumenten ID: | 112278 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:34 |
Letzte Änderungen: | 02. Apr. 2024, 07:34 |