Abstract
We revisit cosmological constraints on the sum of the neutrino masses Sigma(mv) from a combination of full-shape BOSS galaxy clustering [P(k)] data and measurements of the cross-correlation between Planck Cosmic Microwave Background (CMB) lensing convergence and BOSS galaxy overdensity maps [C-l(kg)], using a simple but theoretically motivated model for the scale-dependent galaxy bias in auto- and cross-correlation measurements. We improve upon earlier related work in several respects, particularly through a more accurate treatment of the correlation and covariance between P(k) and C-l(kg) measurements. When combining these measurements with Planck CMB data, we find a 95% confidence level upper limit of Sigma(mv) < 0.14eV, while slightly weaker limits are obtained when including small-scale ACTPol CMB data, in agreement with our expectations. We confirm earlier findings that (once combined with CMB data) the full-shape information content is comparable to the geometrical information content in the reconstructed BAO peaks given the precision of current galaxy clustering data, discuss the physical significance of our inferred bias and shot noise parameters, and perform a number of robustness tests on our underlying model. While the inclusion of C-l(kg) measurements does not currently appear to lead to substantial improvements in the resulting Sigma(mv) constraints, we expect the converse to be true for near-future galaxy clustering measurements, whose shape information content will eventually supersede the geometrical one. (C) 2022 Elsevier B.V. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 2214-4048 |
Sprache: | Englisch |
Dokumenten ID: | 112298 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:35 |
Letzte Änderungen: | 02. Apr. 2024, 07:35 |