Logo Logo
Hilfe
Hilfe
Switch Language to English

Karacsony, Tamas; Loesch-Biffar, Anna Mira; Vollmar, Christian; Remi, Jan; Noachtar, Soheyl und Silva Cunha, Joao Paulo (2022): Novel 3D video action recognition deep learning approach for near real time epileptic seizure classification. In: Scientific Reports, Bd. 12, Nr. 1, 19571

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Seizure semiology is a well-established method to classify epileptic seizure types, but requires a significant amount of resources as long-term Video-EEG monitoring needs to be visually analyzed. Therefore, computer vision based diagnosis support tools are a promising approach. In this article, we utilize infrared (IR) and depth (3D) videos to show the feasibility of a 24/7 novel object and action recognition based deep learning (DL) monitoring system to differentiate between epileptic seizures in frontal lobe epilepsy (FLE), temporal lobe epilepsy (TLE) and non-epileptic events. Based on the largest 3Dvideo-EEG database in the world (115 seizures/+680,000 video-frames/427GB), we achieved a promising cross-subject validation f1-score of 0.833 +/- 0.061 for the 2 class (FLE vs. TLE) and 0.763 +/- 0.083 for the 3 class (FLE vs. TLE vs. non-epileptic) case, from 2 s samples, with an automated semi-specialized depth (Acc.95.65%) and Mask R-CNN (Acc.96.52%) based cropping pipeline to pre-process the videos, enabling a near-real-time seizure type detection and classification tool. Our results demonstrate the feasibility of our novel DL approach to support 24/7 epilepsy monitoring, outperforming all previously published methods.

Dokument bearbeiten Dokument bearbeiten