Abstract
Background: The promotion of healthy lifestyles has high priority on the global public health agenda. Evidence on the real-world (cost-)effectiveness of policies addressing nutrition and physical activity is needed. To estimate short-term policy impacts, quasi-experimental methods using observational data are useful, while simulation models can estimate long-term impacts. We review the methods, challenges and potential synergies of both approaches for the evaluation of nutrition and physical activity policies. Methods: We performed an integrative review applying purposive literature sampling techniques to synthesize original articles, systematic reviews and lessons learned from public international workshops conducted within the European Union Policy Evaluation Network. Results: We highlight data requirements for policy evaluations, discuss the distinct assumptions of instrumental variable, difference-in-difference, and regression discontinuity designs and describe the necessary robustness and falsification analyses to test them. Further, we summarize the specific assumptions of comparative risk assessment and Markov state-transition simulation models, including their extension to microsimulation. We describe the advantages and limitations of these modelling approaches and discuss future directions, such as the adequate consideration of heterogeneous policy responses. Finally, we highlight how quasi-experimental and simulation modelling methods can be integrated into an evidence cycle for policy evaluation. Conclusions: Assumptions of quasi-experimental and simulation modelling methods in policy evaluations should be credible, rigorously tested and transparently communicated. Both approaches can be applied synergistically within a coherent framework to compare policy implementation scenarios and improve the estimation of nutrition and physical activity policy impacts, including their distribution across population sub-groups.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 1101-1262 |
Sprache: | Englisch |
Dokumenten ID: | 113148 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 07:45 |
Letzte Änderungen: | 02. Apr. 2024, 07:45 |