Logo Logo
Hilfe
Hilfe
Switch Language to English

Guettsches, Anne-Katrin; Meyer, Nancy; Zahedi, Rene P.; Evangelista, Teresinha; Muentefering, Thomas; Ruck, Tobias; Lacene, Emmanuelle; Heute, Christoph; Gonczarowska-Jorge, Humberto; Schoser, Benedikt; Krause, Sabine; Hentschel, Andreas; Vorgerd, Matthias und Roos, Andreas (2022): FYCO1 Increase and Effect of Arimoclomol-Treatment in Human VCP-Pathology. In: Biomedicines, Bd. 10, Nr. 10, 2443

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Dominant VCP-mutations cause a variety of neurological manifestations including inclusion body myopathy with early-onset Paget disease and frontotemporal dementia 1 (IBMPFD). VCP encodes a ubiquitously expressed multifunctional protein that is a member of the AAA+ protein family, implicated in multiple cellular functions ranging from organelle biogenesis to ubiquitin-dependent protein degradation. The latter function accords with the presence of protein aggregates in muscle biopsy specimens derived from VCP-patients. Studying the proteomic signature of VCP-mutant fibroblasts, we identified a (pathophysiological) increase of FYCO1, a protein involved in autophagosome transport. We confirmed this finding applying immunostaining also in muscle biopsies derived from VCP-patients. Treatment of fibroblasts with arimoclomol, an orphan drug thought to restore physiologic cellular protein repair pathways, ameliorated cellular cytotoxicity in VCP-patient derived cells. This finding was accompanied by increased abundance of proteins involved in immune response with a direct impact on protein clearaqnce as well as by elevation of pro-survival proteins as unravelled by untargeted proteomic profiling. Hence, the combined results of our study reveal a dysregulation of FYCO1 in the context of VCP-etiopathology, highlight arimoclomol as a potential drug and introduce proteins targeted by the pre-clinical testing of this drug in fibroblasts.

Dokument bearbeiten Dokument bearbeiten