Abstract
Applicable surface-enhanced Raman scattering (SERS) active substrates typically require low-cost patterning methodology, high reproducibility, and a high enhancement factor (EF) over a large area. However, the lack of reproducible, reliable fabrication for large area SERS substrates in a low-cost manner remains a challenge. Here, a patterning method based on nanosphere lithography and adhesion lithography is reported that allows massively parallel fabrication of 10-nm annular gap arrays on large areas. The arrays exhibit excellent reproducibility and high SERS performance, with an EF of up to 10(7). An effective wearable SERS contact lens for glucose detection is further demonstrated. The technique described here extends the range of SERS-active substrates that can be fabricated over large areas, and holds exciting potential for SERS-based chemical and biomedical detection.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
Sprache: | Englisch |
Dokumenten ID: | 114597 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 08:03 |
Letzte Änderungen: | 02. Apr. 2024, 08:03 |