Abstract
In recent years, the time-dependent variational principle (TDVP) method based on the matrix product state (MPS) wave function formulation has shown its great power in performing large-scale quantum dynamics simulations for realistic chemical systems with strong electron-vibration interactions. In this work, we propose a stochastic adaptive single-site TDVP (SA-1TDVP) scheme to evolve the bond-dimension adaptively, which can integrate the traditional advantages of both the high efficiency of the single-site TDVP (1TDVP) variant and the high accuracy of the two-site TDVP (2TDVP) variant. Based on the assumption that the level statistics of entanglement Hamiltonians, which originate from the reduced density matrices of the MPS method, follows a Poisson or Wigner distribution, as generically predicted by random-matrix theory, additional random singular values are generated to expand the bond-dimension automatically. Tests on simulating the vibrationally resolved quantum dynamics and absorption spectra in the pyrazine molecule and perylene bisimide (PBI) J-aggregate trimer as well as a spin-1/2 Heisenberg chain show that it can be automatic and as accurate as 2TDVP but reduce the computational time remarkably.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
Sprache: | Englisch |
Dokumenten ID: | 114786 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 08:05 |
Letzte Änderungen: | 02. Apr. 2024, 08:05 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390814868 |