Abstract
The quality of RNA sequencing transcriptomes is improved when mRNAs are separated by length. The accuracy of methods for assembling transcripts from short-read RNA sequencing data is limited by the lack of long-range information. Here we introduce Ladder-seq, an approach that separates transcripts according to their lengths before sequencing and uses the additional information to improve the quantification and assembly of transcripts. Using simulated data, we show that a kallisto algorithm extended to process Ladder-seq data quantifies transcripts of complex genes with substantially higher accuracy than conventional kallisto. For reference-based assembly, a tailored scheme based on the StringTie2 algorithm reconstructs a single transcript with 30.8% higher precision than its conventional counterpart and is more than 30% more sensitive for complex genes. For de novo assembly, a similar scheme based on the Trinity algorithm correctly assembles 78% more transcripts than conventional Trinity while improving precision by 78%. In experimental data, Ladder-seq reveals 40% more genes harboring isoform switches compared to conventional RNA sequencing and unveils widespread changes in isoform usage upon m(6)A depletion by Mettl14 knockout.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Biologie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
ISSN: | 1087-0156 |
Sprache: | Englisch |
Dokumenten ID: | 114830 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 08:06 |
Letzte Änderungen: | 02. Apr. 2024, 08:06 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 452881907 |