Abstract
NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the beta-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the beta-subunit from solution.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy |
Subjects: | 500 Science > 540 Chemistry |
ISSN: | 0027-8424 |
Language: | English |
Item ID: | 114899 |
Date Deposited: | 02. Apr 2024, 08:07 |
Last Modified: | 02. Apr 2024, 08:07 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 27112786 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 325871075 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390677874 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 24286268 |