Logo Logo
Hilfe
Hilfe
Switch Language to English

Greenstein, R. A. A.; Ng, Henry; Barrales, Ramon R. A.; Tan, Catherine; Braun, Sigurd A. und Al-Sady, Bassem (2022): Local chromatin context regulates the genetic requirements of the heterochromatin spreading reaction.
In: PLOS Genetics 18(5), e1010201

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Author summaryRepressive structures, or heterochromatin, are seeded at specific genome sequences and then spread to silence nearby chromosomal regions. While much is known about the factors that seed heterochromatin, the genetic requirements for spreading are less clear. We devised a fission yeast single-cell method to examine how gene silencing is propagated by the heterochromatin spreading process specifically. Here we use this platform to ask if specific genes are required for the spreading process and whether the same or different genes direct spreading from different chromosomal seeding sites. We find a significant number of genes that specifically promote or antagonize the heterochromatin spreading process. However, different genes are required to enact spreading from different seeding sites. These results have potential implications for cell fate specification, where genes are newly silenced by heterochromatin spreading from diverse chromosomal sites. In a central finding, we show that the Clr6 protein complex, which removes chromatin marks linked to active genes, associates with the Forkhead 2 transcription factor to promote spreading of silencing structures from seeding sites at numerous chromosomal loci. In contrast, we show that proteins that remodel chromatin antagonize the spreading of gene silencing. Heterochromatin spreading, the expansion of repressive chromatin structure from sequence-specific nucleation sites, is critical for stable gene silencing. Spreading re-establishes gene-poor constitutive heterochromatin across cell cycles but can also invade gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context (i.e. euchromatic, heterochromatic) or different nucleation pathways influence heterochromatin spreading remains poorly understood. Previously, we developed a single-cell sensor in fission yeast that can separately record heterochromatic gene silencing at nucleation sequences and distal sites. Here we couple our quantitative assay to a genetic screen to identify genes encoding nuclear factors linked to the regulation of heterochromatin nucleation and the distal spreading of gene silencing. We find that mechanisms underlying gene silencing distal to a nucleation site differ by chromatin context. For example, Clr6 histone deacetylase complexes containing the Fkh2 transcription factor are specifically required for heterochromatin spreading at constitutive sites. Fkh2 recruits Clr6 to nucleation-distal chromatin sites in such contexts. In addition, we find that a number of chromatin remodeling complexes antagonize nucleation-distal gene silencing. Our results separate the regulation of heterochromatic gene silencing at nucleation versus distal sites and show that it is controlled by context-dependent mechanisms. The results of our genetic analysis constitute a broad community resource that will support further analysis of the mechanisms underlying the spread of epigenetic silencing along chromatin.

Dokument bearbeiten Dokument bearbeiten