Logo Logo
Hilfe
Hilfe
Switch Language to English

Hornung, Roman und Boulesteix, Anne-Laure (2022): Interaction forests: Identifying and exploiting interpretable quantitative and qualitative interaction effects. In: Computational Statistics & Data Analysis, Bd. 171, 107460

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Although interaction effects can be exploited to improve predictions and allow for valuable insights into covariate interplay, they are given limited attention in analysis. Interaction forests are a variant of random forests for categorical, continuous, and survival outcomes that explicitly models quantitative and qualitative interaction effects in bivariable splits performed by the trees constituting the forests. The new effect importance measure (EIM) associated with interaction forests allows for ranking of covariate pairs with respect to their interaction effects' importance to prediction. Using EIM, separate importance value lists for univariable effects, quantitative interaction effects, and qualitative interaction effects are obtained. In the spirit of interpretable machine learning, the bivariable split types of interaction forests target easily interpretable and communicable interaction effects. To learn about the nature of the interplay between covariates identified as interacting it is convenient to visualise their estimated bivariable influence. Functions that perform this task are provided in the R package diversityForest, which implements interaction forests. In a large-scale empirical study using 220 data sets, interaction forests tended to deliver better predictions than conventional random forests and competing random forest variants that use multivariable splitting. In a simulation study, EIM delivered considerably better rankings for the relevant quantitative and qualitative interaction effects than competing approaches. These results indicate that interaction forests are suitable tools for the challenging task of identifying and making use of easily interpretable and communicable interaction effects in predictive modelling. (C) 2022 The Author(s). Published by Elsevier B.V.

Dokument bearbeiten Dokument bearbeiten