Logo Logo
Hilfe
Hilfe
Switch Language to English

Li, Wei; Grech, Janessa; Stortz, Johannes Felix; Gow, Matthew; Periz, Javier; Meissner, Markus und Jimenez-Ruiz, Elena (2022): A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in host cell egress and invasion. In: Nature Microbiology, Bd. 7, Nr. 6: S. 882-895

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

A phenotypic screen based on a conditional Cas9-system identifies two Toxoplasma gondii genes, revealing conoid gliding protein (CGP) and signalling linking factor (SLF) that act at different steps in host cell egress. Apicomplexan parasites, such as Toxoplasma gondii, have specific adaptations that enable invasion and exit from the host cell. Owing to the phylogenetic distance between apicomplexan parasites and model organisms, comparative genomics has limited capacity to infer gene functions. Further, although CRISPR/Cas9-based screens have assigned roles to some Toxoplasma genes, the functions of encoded proteins have proven difficult to assign. To overcome this problem, we devised a conditional Cas9-system in T. gondii that enables phenotypic screens. Using an indicator strain for F-actin dynamics and apicoplast segregation, we screened 320 genes to identify those required for defined steps in the asexual life cycle. The detailed characterization of two genes identified in our screen, through the generation of conditional knockout parasites using the DiCre-system, revealed that signalling linking factor (SLF) is an integral part of a signalling complex required for early induction of egress, and a novel conoid protein (conoid gliding protein, CGP) functions late during egress and is required for the activation of gliding motility. Establishing different indicator lines and applying our conditional Cas9 screen could enable the identification of genes involved in organellar biogenesis, parasite replication or maintenance of the endosymbiotic organelles in the future.

Dokument bearbeiten Dokument bearbeiten