Abstract
Intrinsic charge transport in molecularly thin organic semiconducting crystals is critically sensitive to the quality of the interfaces required to perform the electrical measurements. Most prominent are the dielectric-semiconductor and semiconductor-metal interface. While impacts from the latter on charge transport can be extracted by four-terminal measurements, the impact of the dielectric interface can only be minimized, typically by utilizing inert dielectrics. Here, it is shown that charge transport in organic field-effect transistors based on the n-type small molecule N, N '-di((S)-1-methylpentyl)-1,7(6)-dicyano-perylene-3,4:9,10-bis(dicarboximide) (PDI1MPCN2) can be improved up to one order of magnitude by using hexagonal boron nitride (h-BN) as dielectric, compared to a standard SiO2 substrate. Using temperature-dependent electrical measurements, the charge-transport properties of devices are systematically analyzed, and high four-terminal mobilities of up to 5.0 cm(2) V-1 s(-1) are obtained. The high mobility likely stems from decreased charge-carrier trapping at the semiconductor-dielectric interface due to the smooth surface of the inert h-BN. Nevertheless, the temperature dependencies of the mobility, threshold voltage, and interface-state trap density suggest that charge-carrier trapping at the dielectric-semiconductor interface still exists. By comparing the data to transport studies performed on thin air-gapped organic films, it is concluded that an interfacial layer (likely water or solvent residues) between h-BN and the monolayer PDI1MPCN2 causes charge trapping.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 2196-7350 |
Sprache: | Englisch |
Dokumenten ID: | 115328 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 08:12 |
Letzte Änderungen: | 02. Apr. 2024, 08:12 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390776260 |