Abstract
Quantitative magnetic resonance imaging (qMRI) has been shown to provide many potential advantages for personalized adaptive radiotherapy (RT). Deep learning models have proven to increase efficiency, robustness and speed for different qMRI tasks. Therefore, this article discusses the current state-of-the-art and potential future opportunities as well as challenges related to the use of deep learning in qMRI for target contouring, quantitative parameter estimation and also the generation of synthetic computerized tomography (CT) data based on MRI in personalized RT.Semin Radiat Oncol 32:377-388 (c) 2022 Elsevier Inc. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 1053-4296 |
Sprache: | Englisch |
Dokumenten ID: | 115433 |
Datum der Veröffentlichung auf Open Access LMU: | 02. Apr. 2024, 08:14 |
Letzte Änderungen: | 02. Apr. 2024, 08:14 |