Abstract
Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultätsübergreifende Einrichtungen: | Centrum für Informations- und Sprachverarbeitung (CIS) |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
400 Sprache > 400 Sprache |
Ort: | Stroudsburg, PA |
Bemerkung: | ISBN 978-1-955917-25-4 |
Sprache: | Englisch |
Dokumenten ID: | 115737 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Apr. 2024, 12:26 |
Letzte Änderungen: | 19. Apr. 2024, 12:26 |