Abstract
We consider a generic framework for generating likelihood ratio weighted Monte Carlo simulation paths, where we use one simulation scheme (proxy scheme) to generate realizations and then reinterpret them as realizations of another scheme (target scheme) by adjusting measure (via likelihood ratio) to match the distribution.
This makes the approach independent of the product (the function f) and even of the model, it only depends on the numerical scheme.
The approach is essentially a numerical version of the likelihood ratio method and Malliavin's Calculus reconsidered on the level of the discrete numerical simulation scheme.
Since the numerical scheme represents a time discrete stochastic process sampled on a discrete probability space the essence of the method may be motivated without a deeper mathematical understanding of the time continuous theory (e.g. Malliavin's Calculus).
The framework is completely generic and may be used for high accuracy drift approximations, process oriented importance sampling and the robust calculation of partial derivatives of expectations w.r.t. model parameters (i.e. sensitivities, aka. Greeks) by applying finite differences by reevaluating the expectation with a model with shifted parameters. We present numerical results using a Monte-Carlo simulation of the LIBOR Market Model for benchmarking.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1556-5068 |
Sprache: | Englisch |
Dokumenten ID: | 115749 |
Datum der Veröffentlichung auf Open Access LMU: | 23. Apr. 2024, 07:53 |
Letzte Änderungen: | 23. Apr. 2024, 07:53 |